Surname
Other Names

Centre Number

Candidate Number
2

GCE AS/A level

WJEC CBAC

1091/01

CHEMISTRY - CH1

A.M. THURSDAY, 9 January 2014

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- calculator;
- copy of the Periodic Table supplied by WJEC.

Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

	For Examiner's use only		
Section A	Question	Maximum Mark	Mark Awarded
Section B	1.5.	10	
ed a:	6.	8	
	7.	15	
	8.	19	
u require.	9.	18	
	10.	10	
	Total	80	

Use black ink or black ball-point pen.
Write your name, centre number and candidate number in the spaces at the top of this page.
Section A Answer all questions in the spaces provided.
Section B Answer all questions in the spaces provided.
Candidates are advised to allocate their time appropriately between Section A (10 marks) and Section B (70 marks).

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
The maximum mark for this paper is 80 .
Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.
The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page(s) at the back of the booklet, taking care to number the question(s) correctly.

SECTION A

Answer all questions in the spaces provided.

1. An element, X, has an atomic number of 9 and forms an ion X^{-}. State which one of the following shows the numbers of protons and electrons in this ion.
protons electrons

A	8	9
B	9	8
C	9	9
D	9	10

2. State which one of the following shows the mass of aluminium that contains the same number of atoms as there are molecules in 11.0 g of carbon dioxide, CO_{2}.
A
6.75 g
B $\quad 13.5 \mathrm{~g}$
C $\quad 27.0 \mathrm{~g}$
D $\quad 54.0 \mathrm{~g}$

3. The isotope ${ }^{32} \mathrm{P}$ is radioactive. It decays by β-emission and has a half-life of 14 days.
(a) State what is meant by β-emission.
\qquad
(b) Give the mass number and symbol of the atom formed by the loss of one β-particle from an atom of ${ }^{32} \mathrm{P}$.
..
(c) State what is meant by the term half-life.

\qquad
(d) Calculate how long it will take a sample of ${ }^{32} \mathrm{P}$ to decay from 8 g to 1 g .
4. Study the following energy cycle.

$$
2 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})+31_{2} \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\Delta \mathrm{H}^{\ominus}} \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+31 / 2 \mathrm{O}_{2}(\mathrm{~g})
$$

Use the values in the table below to calculate the enthalpy change of reaction, $\Delta \mathrm{H}^{\ominus}$.

Substance	Enthalpy change of combustion, $\Delta \mathrm{H}_{\mathrm{c}}^{\ominus} / \mathrm{kJ} \mathrm{mol}^{-1}$
carbon	-394
hydrogen	-286
ethane	-1560

$\Delta H^{\ominus}=$ \qquad $k \mathrm{~mol}^{-1}$
5. Silver tarnishes because it reacts with hydrogen sulfide in the air to form silver sulfide.

A 1.24 g sample of silver sulfide contains 0.16 g of sulfur. Calculate the empirical formula of this compound. Show your working.

Empirical formula \qquad

SECTION B

Answer all questions in the spaces provided.
6. (a) The mass spectrum of chlorine, Cl_{2}, is shown below.

(i) Identify the positive ions that are responsible for the peaks \mathbf{B} and \mathbf{C}.

Peak B \qquad
Peak C \qquad
(ii) Use the mass spectrum to calculate the ratio of peak height \mathbf{C} : peak height \mathbf{E}. [2]
\qquad
(iii) Explain why the peak heights of \mathbf{C} and \mathbf{E} are in this ratio.
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Another element in Group 7 is bromine, Br .

Its mass spectrum shows that bromine has two naturally-occurring isotopes. The abundance of each isotope is given below.

Isotope	Percentage abundance/\%
${ }^{79} \mathrm{Br}$	50.69
${ }^{81} \mathrm{Br}$	49.31

Calculate the relative atomic mass of bromine, giving your answer to four significant figures.
7. Oxygen can be produced in the laboratory by the decomposition of hydrogen peroxide.

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})
$$

Trystan carried out experiments to study the effect of using two metal oxides, \mathbf{A} and \mathbf{B}, to catalyse the reaction. He used 0.5 g of each metal oxide and diluted $10 \mathrm{~cm}^{3}$ of a hydrogen peroxide solution with $90 \mathrm{~cm}^{3}$ of water in each case. Following dilution the solutions were kept at a constant temperature of $35^{\circ} \mathrm{C}$ throughout the experiment.

He plotted his results on the graph shown below.

(a) Outline a suitable method, including essential apparatus, for carrying out an experiment to obtain these results. You may include a diagram if you consider it helpful.
(b) State, giving a reason, which oxide is the more efficient catalyst. [1] ${ }^{\text {Examiner }}$ only
catalyst
(c) In the experiment with oxide A, calculate the volume of oxygen evolved
(i) during the first minute,
(ii) during the third minute.
(d) Explain the difference between the answers in (c)(i) and (c)(ii).
\qquad
\qquad
(e) Give a reason why the total volume of oxygen obtained in the two experiments is the same.
\qquad
\qquad
(f) If Trystan repeated the experiment using $5 \mathrm{~cm}^{3}$ of the original hydrogen peroxide solution diluted with $95 \mathrm{~cm}^{3}$ of water, state the final volume of oxygen that would be evolved. [1]
(g) If he carried out the experiments at $45^{\circ} \mathrm{C}$ instead of $35^{\circ} \mathrm{C}$, state what effect this would have on the time required to obtain the final volume of oxygen. Use collision theory to explain your answer.
8. This question is about atomic structure.
(a) Give the full electronic configuration of a nitrogen atom and use this to describe the way in which electrons are arranged in atoms.
\qquad
(b) Describe the main features of the atomic emission spectrum of hydrogen in the visible region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom.
\qquad
\qquad
\qquad
(ii) Beryllium and magnesium are both in Group 2 of the Periodic Table. Explain why beryllium has a higher first ionisation energy than magnesium.
\qquad
\qquad
\qquad
(iii) The table below gives the first three ionisation energies for boron and potassium.

Element	Ionisation energy/kJ mol		
	1st	2nd	3rd
B	800	2420	3660
K	419	3051	4412

I Suggest why compounds containing B^{3+} ions are unlikely to exist.

II Write an equation to represent the second ionisation energy of potassium.

III State how the first three ionisation energies of calcium would differ from those of potassium.
\qquad
\qquad
\qquad
9. (a) State what is meant by the term standard molar enthalpy change of formation.
\qquad
\qquad
\qquad
(b) (i) Write an equation to represent the standard molar enthalpy change of formation, $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$, of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.
(ii) The standard molar enthalpy change of formation, $\Delta \mathrm{H}_{\mathrm{f}}^{\ominus}$, of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is $-242 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Using this value and the average bond enthalpies given in the table below, calculate the average bond enthalpy of the $\mathrm{O}-\mathrm{H}$ bond in $\mathrm{H}_{2} \mathrm{O}$.

Bond	Average bond enthalpy/kJ mol ${ }^{-1}$
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{O}=\mathrm{O}$	496

Average bond enthalpy of $\mathrm{O}-\mathrm{H}$ bond $=$ \qquad
(c) Hydrogen has been proposed as a possible alternative to petrol as a fuel for cars. One suggestion is to store the hydrogen in the car as solid magnesium hydride, MgH_{2}, and generate it as required by heating.
(i) I Give one advantage of using hydrogen in place of petrol as a fuel for cars.

II Give one advantage of storing the fuel in the car in the form of magnesium hydride rather than hydrogen gas.
(ii) One possible disadvantage of using magnesium hydride arises from its reaction with water.

$$
\mathrm{MgH}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g})
$$

Suggest why magnesium hydride's reaction with water could be a problem.
\qquad
(iii) The fuel tank of one type of hydrogen-powered car holds 70 kg of magnesium hydride.
Calculate the volume of hydrogen gas, measured at room temperature and pressure, which would be produced if this amount of magnesium hydride reacted with water.
[1 mol of gas molecules occupies $24 \mathrm{dm}^{3}$ at room temperature and pressure]

Volume of hydrogen gas = \qquad dm^{3}
(d) Methanol can be produced industrially by passing carbon monoxide and hydrogen over a catalyst at high temperatures and pressures.

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g}) \quad \Delta \mathrm{H}=-91 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

(i) State how the equilibrium yield of methanol is affected by an increase in temperature and in pressure.
(ii) Explain your answer to part (i).
\qquad
\qquad
\qquad
\qquad
(e) Many catalysts are very expensive but their use does allow the chemical industry to operate more profitably. Explain why the use of catalysts provides economic and environmental benefits.

10. (a) Sodium carbonate can be manufactured in a two-stage process as shown by the following equations.
 $$
\begin{aligned} \mathrm{NaCl}+ & \mathrm{NH}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{NaHCO}_{3}+\mathrm{NH}_{4} \mathrm{Cl} \\ 2 \mathrm{NaHCO}_{3} & \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \end{aligned}
$$

Calculate the maximum mass of sodium carbonate which could be obtained from 900 g of sodium chloride.
(b) Sodium carbonate can form a hydrate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$.

When 4.64 g of this hydrate was heated, 2.12 g of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ remained.
(i) State the mass of water in 4.64 g of the hydrate.
(ii) Calculate the number of moles of sodium carbonate and the number of moles of water in 4.64 g of the original hydrate. Use these values to calculate the value of x in $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$.

QUESTION 10 CONTINUES ON PAGE 16

(c) Hannah is given an impure sample of anhydrous sodium carbonate and she carries out an experiment to determine the percentage of sodium carbonate in the sample.
She finds that she needs $18.0 \mathrm{~cm}^{3}$ of hydrochloric acid of concentration $0.50 \mathrm{~mol} \mathrm{dm}^{-3}$ to react completely with 0.55 g of the impure sample. The impurity does not react with hydrochloric acid. The equation for the reaction is given below.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

(i) Calculate the number of moles of HCl used in the titration.
(ii) Deduce the number of moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ that reacted with the HCl .
(iii) Calculate the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the sample.
(iv) Calculate the percentage by mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the sample.

For continuation only.

For continuation only.

For continuation only.
A.M. THURSDAY, 9 January 2014

d Block
2

THE PERIODIC TABLE																		
Period $\stackrel{\text { s Block }}{\longrightarrow}$																		
1	$\stackrel{\leftrightarrow}{\substack{1.01 \\ \text { Hy } \\ \text { Hyrogen } \\ 1}}$												p Block					$\begin{aligned} & 4.00 \\ & H e \\ & \text { Helium } \\ & \text { He } \end{aligned}$
2	$\begin{gathered} 6.94 \\ \mathrm{Li} \\ \text { Lithium } \\ \hline \end{gathered}$													$\begin{array}{\|c\|c\|} \hline 12.0 \\ \text { Carbon } \\ \hline \end{array}$	$\stackrel{\substack{14.0 \\ \text { Nitrogen } \\ 7}}{ }$	$\begin{array}{\|c} \substack{16.0 \\ \text { Oxygen } \\ \hline \\ \hline} \end{array}$	$\begin{gathered} 19.0 \\ F \\ \text { Fluorine } \\ 9 \end{gathered}$	$\begin{gathered} 20.2 \\ \mathrm{Ne} \\ \text { Neon } \\ 10 \end{gathered}$
3	$\begin{array}{\|c} 23.0 \\ \mathrm{Na} \\ \text { Sodium } \\ 11 \end{array}$	$\begin{gathered} 24.3 \\ \mathrm{Mg} \\ \text { Magnesium } \\ \hline 12 \end{gathered}$					dBl						$\begin{array}{\|c\|} \hline 27.0 \\ \text { AI } \\ \text { Aluminum } \\ 13 \end{array}$	$\begin{gathered} 28.1 \\ \mathrm{Si} \\ \text { Silicon } \\ 14 \end{gathered}$	$\underset{\substack{31.0 \\ P \\ \text { Phosphous } \\ 15}}{ }$	$\begin{gathered} 32.1 \\ \mathrm{~S} \\ \text { Sulfur } \\ 16 \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} 35.5 \\ \text { Cl } \\ \text { Chlorin } \\ 17 \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { 40.0 } \\ \text { Argon } \\ \text { Argon } \\ 18 \end{gathered}$
4	$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline 39.1 \\ \text { Potassium } \\ \hline \end{array}$	$\begin{gathered} 40.1 \\ \text { Ca } \\ \text { Calcium } \\ 20 \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} 45.0 \\ \text { Scandum } \\ \text { Scalium } \\ \hline \end{array} \\ \hline \end{array}$	$\begin{array}{\|c} \begin{array}{c} 47.9 \\ \text { TTi } \\ \text { Titanium } \\ 22 \end{array} \\ \hline \end{array}$	50.9 V Vanadium 23		$\begin{array}{\|c} 54.9 \\ \mathrm{Mn} \\ \text { Manganese } \\ \hline 25 \end{array}$		$\begin{array}{\|c\|c} 58.9 \\ \text { Co } \\ \text { Cobalt } \\ 27 \end{array}$	$\begin{array}{\|c} \hline 58.7 \\ \mathrm{Ni} \\ \mathrm{Ni} \mathrm{ckel} \\ 28 \\ \hline \end{array}$	63.5 Cu Copper 29	$\begin{aligned} & 65.4 \\ & \text { Zn } \\ & \text { Zinc } \\ & 30 \end{aligned}$	$\begin{array}{\|c} \begin{array}{c} \text { 69.7 } \\ \text { Gal } \\ \text { Galliu } \\ 31 \end{array} \\ \hline \end{array}$	$\begin{gathered} \text { ch.6 } \\ G e \\ \text { Gemanium } \\ 32 \end{gathered}$	74.9 As Arsenic 33	$\begin{array}{\|c\|c} 79.0 \\ \mathrm{Se} \\ \text { Selenium } \\ 34 \\ \hline \end{array}$	79.9 Br Bromine 35	83.8 Kr Krypton 36
5	$\begin{array}{\|c\|} \hline 85.5 \\ R b \\ \text { Rubidium } \\ 37 \end{array}$	$\begin{array}{\|c\|} \hline 87.6 \\ \mathrm{Sr} \\ \text { Strontium } \\ 38 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 88.9 \\ \text { Y } \\ \text { Ytrium } \\ 39 \end{array}$	$\begin{array}{\|c} 91.2 \\ \text { Zr } \\ \text { Zirconium } \\ 40 \end{array}$	$\begin{array}{\|c\|} \hline 92.9 \\ \mathrm{Nb} \\ \text { Niobium } \\ 41 \\ \hline \end{array}$	95.9 $M o$ Moybdenum 42		$\begin{gathered} 101 \\ \text { Ru } \\ \text { Ruthenum } \\ 44 \\ \hline \end{gathered}$	103 Rh Rhodium 45	106 Pd Palladium 46	$\begin{gathered} 108 \\ A g \\ \text { Silver } \\ 47 \end{gathered}$	112 Cadmium 48	$\begin{gathered} 115 \\ \text { In } \\ \text { Indium } \\ 49 \\ \hline \end{gathered}$	$\begin{aligned} & 119 \\ & \mathrm{Sn} \\ & \mathrm{Tin} \\ & 50 \\ & \hline \end{aligned}$		$\begin{gathered} \hline 128 \\ \mathrm{Te} \\ \text { Tellurium } \\ 52 \\ \hline \end{gathered}$	$\begin{gathered} \hline 127 \\ 1 \\ \text { Iodine } \\ 53 \\ \hline \end{gathered}$	$\begin{gathered} \hline 131 \\ \text { Xe } \\ \text { Xenon } \\ 54 \\ \hline \end{gathered}$
6	$\begin{array}{\|c} \begin{array}{c} 133 \\ \text { Csesium } \\ \text { Cas } \\ 55 \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|c} 137 \\ \text { Ba } \\ \text { Barium } \\ 56 \end{array}$		$\begin{array}{\|c\|c} 179 \\ \text { Hf } \\ \text { Haffium } \\ 72 \end{array}$	$\begin{array}{\|c} 181 \\ \text { Ta } \\ \text { Tanalaum } \\ 73 \\ \hline \end{array}$	$\begin{gathered} 184 \\ W \\ \text { Tungsten } \end{gathered}$	$\begin{gathered} 186 \\ \text { Re } \\ \text { Renenium } \\ 75 \\ \hline \end{gathered}$	$\begin{gathered} 190 \\ \text { Os } \\ \text { Osmium } \\ 76 \end{gathered}$	$\begin{array}{\|c} 192 \\ \text { Ir } \\ \text { Iridium } \\ 77 \end{array}$	$\begin{array}{\|c} 195 \\ \text { Pt } \\ \text { Platinum } \\ 78 \\ \hline \end{array}$	$\begin{aligned} & 1979 \\ & \text { Au } \\ & \text { Gold } \\ & 79 \end{aligned}$	$\begin{gathered} 201 \\ \mathrm{Hg} \\ \text { Mercury } \\ 80 \end{gathered}$	$\begin{gathered} 204 \\ \text { T1 } \\ \text { Thallium } \\ 81 \end{gathered}$	$\begin{aligned} & 207 \\ & \text { Pb } \\ & \text { Lead } \\ & 82 \end{aligned}$	$\begin{gathered} 209 \\ \mathrm{Bi} \\ \text { Bismuth } \\ 83 \end{gathered}$	$\begin{gathered} (210) \\ \text { Po } \\ \text { Polonium } \\ 84 \end{gathered}$	$\left.\begin{gathered} (210) \\ \text { At } \\ \text { Astatine } \\ 85 \end{gathered} \right\rvert\,$	(222) Rn Radon 86
7	(223) Fr Francium 87	$\begin{array}{\|c} \hline(226) \\ \text { Ra } \\ \text { Radium } \\ 88 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline(227) \\ \mathrm{Ac}^{(27 n i m} \\ \text { Acnium } \\ \hline \end{array}$								lock							
			nthanoid ments	140 Ce Cerium 58	$\begin{array}{\|c\|c} 141 \\ \text { Pr } \\ \text { framanamim } \\ 59 \end{array}$	$\begin{gathered} 144 \\ \begin{array}{c} 14 d^{2} \\ \text { Noobphium } \\ 60 \end{array} \end{gathered}$		$\begin{array}{\|c} \begin{array}{c} 150 \\ \text { Sm } \\ \text { Samaium } \\ 62 \end{array} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { (153) } \\ \text { Eu } \\ \text { Europum } \\ 63 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 157 \\ G d \\ \text { Gaxdiuium } \\ 64 \end{array}$	$\begin{gathered} 159 \\ \text { Tb } \\ \substack{150 \\ \text { Tebium } \\ 65} \end{gathered}$	$\begin{gathered} 163 \\ \text { Dy } \\ \text { Dysposim } \\ 66 \end{gathered}$	$\begin{gathered} 165 \\ \text { Ho } \\ \text { Holmum } \\ 67 \end{gathered}$	$\begin{array}{\|c\|} \hline 167 \\ \text { Er } \\ \text { Erbium } \\ 68 \\ \hline \end{array}$	$\begin{array}{c\|} \hline 169 \\ T m \\ \text { Thulium } \\ 69 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 173 \\ \text { Yb } \\ \text { YYtebium } \\ \hline 70 \end{array}$	$\begin{gathered} 175 \\ \text { Lu } \\ \text { Lutefium } \\ 71 \end{gathered}$	
			actinoid	232 Th Thorium 90	$\begin{array}{\|c\|} \hline \begin{array}{c} (231) \\ \text { Pa } \\ \text { Proxacium } \\ 91 \end{array} \\ \hline \end{array}$	$\begin{gathered} 238 \\ \bigcup_{\text {Uranium }}^{92} \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline(237) \\ \mathrm{Np} \\ \text { Nepunuim } \\ 93 \end{array}$	$\begin{gathered} \hline(242) \\ \mathrm{Pu} \\ \text { Putuonium } \\ 94 \end{gathered}$	$\begin{array}{\|c\|} \hline(243) \\ \text { Am } \\ \text { Ameicium } \\ 95 \end{array}$	$\begin{array}{\|c\|} \hline \text { (247) } \\ \mathrm{Cm} \\ \text { Curium } \\ 96 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} (245) \\ \text { Bk } \\ \text { Berkelium } \\ 97 \end{array} \\ \hline \end{array}$	$\begin{gathered} \hline(251) \\ \mathrm{Cf} \\ \text { Calfonium } \\ 98 \\ \hline \end{gathered}$	$\substack{\text { (254) } \\ \text { Es } \\ \text { Enstaium } \\ 99}$	c (253) Fm Ferrmum 100	$\begin{array}{\|c\|} \hline(256) \\ \text { Md } \\ \text { Mendededim } \\ \hline 101 \end{array}$	$\begin{array}{\|c\|} \hline \text { (254) } \\ \text { No } \\ \text { Nobefium } \\ 102 \\ \hline \end{array}$	$\begin{array}{\|c\|c} \hline \text { (257) } \\ \text { Lr } \\ \text { Lawenenim } \\ 103 \end{array}$	

