Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1091/01

CHEMISTRY - CH1

A.M. THURSDAY, 9 January 2014

1 hour 30 minutes

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.5.	10	
6.	8	
7.	15	
8.	19	
9.	18	
10.	10	
Total	80	

Section A

ADDITIONAL MATERIALS

In addition to this examination paper, you will need a:

- · calculator:
- copy of the Periodic Table supplied by WJEC.
 Refer to it for any relative atomic masses you require.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Section A Answer **all** questions in the spaces provided.

Section B Answer **all** questions in the spaces provided.

Candidates are advised to allocate their time appropriately between **Section A (10 marks)** and **Section B (70 marks)**.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

The maximum mark for this paper is 80.

Your answers must be relevant and must make full use of the information given to be awarded full marks for a question.

The QWC label alongside particular part-questions indicates those where the Quality of Written Communication is assessed.

If you run out of space, use the continuation page(s) at the back of the booklet, taking care to number the question(s) correctly.

1	Examine
	only

SECTION A

			Answe	r all questions in the	spaces provided.	
1.	An element, X, has an atomic number of 9 and forms an ion X ⁻ . State which one of the following shows the numbers of protons and electrons in this ion . [1]					
			protons	electrons		
		Α	8	9		
		В	9	8		
		С	9	9		
		D	9	10		
2.	State of ato	which one oms as ther	of the followi e are molecul	ing shows the mass les in 11.0 g of carbo	of aluminium that contain n dioxide, CO ₂ .	is the same number [1]
		Α	6.75 g			
		В	13.5 g			
		С	27.0 g			
		D	54.0 g			
3.	The i	sotope ³² P	is radioactive	. It decays by β-emis	sion and has a half-life o	f 14 days.
	(a)	State wha	t is meant by	β-emission.		[1]
	(b)	Give the n	nass number f ³² P.	and symbol of the at	om formed by the loss of	one β-particle from [1]
	(c)		it is meant by	the term <i>half-life</i> .		[1]
	(d)	Calculate	how long it w	ill take a sample of ³	² P to decay from 8g to 1	g. [1]

© WJEC CBAC Ltd. (1091-01)

Time taken = days

[2]

PMT

4. Study the following energy cycle.

$$2C(s) + 3H_{2}(g) + 3\frac{\Delta H^{\oplus}}{2CO_{2}(g)} \xrightarrow{\Delta H^{\oplus}} C_{2}H_{6}(g) + 3\frac{1}{2}O_{2}(g)$$

$$2CO_{2}(g) + 3H_{2}O(I)$$

Use the values in the table below to calculate the enthalpy change of reaction, ΔH^{\oplus} .

Substance	Enthalpy change of combustion, ΔH [⊕] _c / kJ mol ⁻¹
carbon	-394
hydrogen	-286
ethane	-1560

$$\Delta H^{\oplus}$$
 = kJ mol⁻¹

1091 010003

5.	Silver tarnishes because it reacts with hydrogen sulfide in the air to form silver sulfide.	Examiner only
	A 1.24g sample of silver sulfide contains 0.16g of sulfur. Calculate the empirical formula of this compound. Show your working . [2]	
	Empirical formula	
	Section A Total [10]	l

© WJEC CBAC Ltd.

(1091-01)

only

1091 010005

Ratio

PMT

SECTION B

Answer all questions in the spaces provided.

The mass spectrum of chlorine, Cl_2 , is shown below. 6. (a)

(i)	Identify the positive ions that are responsible for the peaks B and C .	[2]
	Peak B	
	Peak C	

Use the mass spectrum to calculate the ratio of peak height C: peak height E. [2] (ii)

(iii)	Explain why the peak heights of C and E are in this ratio.	[2]
•••••		

(b) Another element in Group 7 is bromine, Br.

Its mass spectrum shows that bromine has two naturally-occurring isotopes. The abundance of each isotope is given below.

Isotope	Percentage abundance/%
⁷⁹ Br	50.69
⁸¹ Br	49.31

Calculate the relative atomic mass of bromine, giving your answer to **four** significant figures. [2]

Relative atomic mass =	
------------------------	--

Total [8]

1091 010007

PMT

$$2H_2O_2(aq)$$
 \longrightarrow $2H_2O(I)$ + $O_2(g)$

Trystan carried out experiments to study the effect of using two metal oxides, $\bf A$ and $\bf B$, to catalyse the reaction. He used 0.5g of each metal oxide and diluted $10\,{\rm cm}^3$ of a hydrogen peroxide solution with $90\,{\rm cm}^3$ of water in each case. Following dilution the solutions were kept at a constant temperature of $35\,{\rm ^\circ C}$ throughout the experiment.

He plotted his results on the graph shown below.

(a) Outline a suitable method, including essential apparatus, for carrying out an experiment to obtain these results. You may include a diagram if you consider it helpful. [4]

Turn over.

(b)	State, giving a reason, which oxide is the more efficient catalyst.	[1]
(c)	In the experiment with oxide A , calculate the volume of oxygen evolved (i) during the first minute,	[1]
	(ii) during the third minute.	[1]
(d)	Explain the difference between the answers in (c)(i) and (c)(ii).	[2]
(e)	Give a reason why the total volume of oxygen obtained in the two experiments is same.	the
(f)	If Trystan repeated the experiment using 5 cm ³ of the original hydrogen peroxide solu diluted with 95 cm ³ of water, state the final volume of oxygen that would be evolved.	tion [1]

PMT

	OI	(g) If he carried out the experiments at 45°C instead of 35°C, state what effect this would have on the time required to obtain the final volume of oxygen. Use collision theory to explain your answer. [3] QWC [1]
Total [15]		Total ME1

Total [15]

1091 010009

© WJEC CBAC Ltd. (1091-01) Turn over.

(a)	Give the full electronic configuration of a nitrogen atom and use this to describe the way in which electrons are arranged in atoms. [4] QWC [1]
(b)	Describe the main features of the atomic emission spectrum of hydrogen in the visible
,	region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
	region. Explain how these features arise and how their interpretation provides evidence
	region. Explain how these features arise and how their interpretation provides evidence
	region. Explain how these features arise and how their interpretation provides evidence
	region. Explain how these features arise and how their interpretation provides evidence
	region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
	region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]
	region. Explain how these features arise and how their interpretation provides evidence for energy levels in the atom. [6]

(1091-01)

© WJEC CBAC Ltd.

•••••		•••••					•••••
(ii)	Bery Expl	rllium and ain why b	magnesiu peryllium ha	m are both in is a higher fir	Group 2 of	f the Periodic Table. n energy than magnesium.	[2]
iii)	The	table belo	ow gives th	e first three i	onisation er	nergies for boron and potass	ium.
	EI	ement		ion energy/k			
		D	1st	2nd	3rd	_	
		B K	800 419	2420 3051	3660 4412		
						ons are unlikely to exist. I ionisation energy of potassi	[1] um. [1]
	II	vvrite ai					
	 			three ionisati	on energies	of calcium would differ from	those [2]

b)	(i)	Write an equation to represent the	standard molar enthalpy change of form	ation,
		ΔH_f^{\oplus} , of $H_2O(g)$.		[1]
•••••	(ii)	The standard molar enthalpy change Using this value and the average both the average bond enthalpy of the O	e of formation, ΔH^{\bigoplus}_f , of $H_2O(g)$ is -242 kJ r and enthalpies given in the table below, calc — H bond in H_2O .	mol ⁻¹ . culate [2]
		Bond	Average bond enthalpy/kJ mol ⁻¹	
		H—H	436	
		0=0	496	
		Average bond er	othalpy of O — H bond =k.L.	mol ⁻¹
c)	sugg	rogen has been proposed as a possi gestion is to store the hydrogen in the	othalpy of O — H bond =kJ l ble alternative to petrol as a fuel for cars e car as solid magnesium hydride, MgH ₂	. One
c)	gene	rogen has been proposed as a possigestion is to store the hydrogen in the erate it as required by heating.	ble alternative to petrol as a fuel for cars e car as solid magnesium hydride, MgH ₂	. One
c)	sugg	rogen has been proposed as a possigestion is to store the hydrogen in the erate it as required by heating.	ble alternative to petrol as a fuel for cars	. One

© WJEC CBAC Ltd.

	(ii)	One possible disadvantage of using magnesium hydride arises from its reaction with water.	Examiner only
		$MgH_2(s) + 2H_2O(l) \longrightarrow Mg(OH)_2(s) + 2H_2(g)$ Suggest why magnesium hydride's reaction with water could be a problem. [1]	
	(iii)	The fuel tank of one type of hydrogen-powered car holds 70 kg of magnesium hydride. Calculate the volume of hydrogen gas, measured at room temperature and pressure, which would be produced if this amount of magnesium hydride reacted with water. [3] [1 mol of gas molecules occupies 24 dm³ at room temperature and pressure]	
(d)		$\label{eq:Volume} \textit{Volume of hydrogen gas} = \dots \text{dm}^3$ nanol can be produced industrially by passing carbon monoxide and hydrogen over a lyst at high temperatures and pressures.	
	(i)	CO(g) + $2H_2(g)$ \rightleftharpoons $CH_3OH(g)$ $\Delta H = -91 \text{ kJ mol}^{-1}$ State how the equilibrium yield of methanol is affected by an increase in temperature and in pressure. [1]	
	(ii)	Explain your answer to part (i). [2]	

(e)	Many catalysts are very expensive but their use does allow the chemical industry to operate more profitably. Explain why the use of catalysts provides economic and environmental benefits. [3] QWC [1]	Or
•••••		
•••••		

Total [18]

PMT

Examiner only

10. (a) Sodium carbonate can be manufactured in a two-stage process as shown by the following equations.

NaCl + NH
$$_3$$
 + CO $_2$ + H $_2$ O \longrightarrow NaHCO $_3$ + NH $_4$ Cl
2NaHCO $_3$ \longrightarrow Na $_2$ CO $_3$ + H $_2$ O + CO $_2$

Calculate the maximum mass of sodium carbonate which could be obtained from 900 g of sodium chloride.

Maximum mass of sodium carbonate =g

(b) Sodium carbonate can form a hydrate, $Na_2CO_3.xH_2O$.

When 4.64 g of this hydrate was heated, 2.12 g of anhydrous Na₂CO₃ remained.

- (i) State the mass of water in 4.64 g of the hydrate.
- (ii) Calculate the number of moles of sodium carbonate and the number of moles of water in 4.64g of the original hydrate. Use these values to calculate the value of x in Na₂CO₃.xH₂O.[2]

x =

[1]

QUESTION 10 CONTINUES ON PAGE 16

© WJEC CBAC Ltd. (1091-01) Turn over.

Еха	m	ine
0	nl	V

(c)	an e She to re	nah is given an impure sample of anhydrous sodium carbonate and she carries out experiment to determine the percentage of sodium carbonate in the sample. finds that she needs 18.0 cm ³ of hydrochloric acid of concentration 0.50 mol dm ⁻³ act completely with 0.55 g of the impure sample. The impurity does not react with ochloric acid. The equation for the reaction is given below.
		Na_2CO_3 + 2HCl \longrightarrow 2NaCl + H_2O + CO_2
	(i)	Calculate the number of moles of HCl used in the titration. [1]
	(ii)	Number of moles of HCI = mol Deduce the number of moles of Na $_2$ CO $_3$ that reacted with the HCI. [1]
	(iii)	Calculate the mass of Na ₂ CO ₃ in the sample. [1]
		Mass of Na ₂ CO ₃ in sample =g
	(iv)	Calculate the percentage by mass of Na ₂ CO ₃ in the sample. [1]

Percentage by mass = %

Total [10]

Section B Total [70]

END OF PAPER

	Examiner only
For continuation only.	0,

For continuation only.	Examiner only

For continuation only.	Examiner only

GCE AS/A level

CHEMISTRY – PERIODIC TABLE FOR USE WITH CH1

A.M. THURSDAY, 9 January 2014

2

X 33

(222) **Rn**

83.8 **7**

Helium

4.00 **He**

THE PERIODIC TABLE

Neon

20.2 **Ne**